If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+23q-24=0
a = 1; b = 23; c = -24;
Δ = b2-4ac
Δ = 232-4·1·(-24)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-25}{2*1}=\frac{-48}{2} =-24 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+25}{2*1}=\frac{2}{2} =1 $
| 6s-2=16 | | 13a-4a=18 | | 8t-3t=20 | | 3(q+7)-8=-8 | | 3z+6z=9 | | (3x)+(3x)+(4x+2)+(4x+2)=74 | | 20s-18s=12 | | 34=3u+4(u-2) | | 27z^2-20z=0 | | 6x*3.5x=2100 | | 4m^2-25m+6=0 | | 34=3u+4 | | 10z-2z=16 | | -48=6(v=2) | | 4m2-25m+6=0 | | 3h^2-17h-6=0 | | -15y-y=16 | | 4+2/5x=1/4x+7 | | -6=12y-12y-18 | | 5(w+2)-2w=37 | | 45-10=7x | | 1+2x/3=1 | | 17=1.08^x | | -6y+2(y-2)=32 | | 7u=88 | | -6(x-8)-7=1(x-3) | | 8c+12c+-19=1 | | 5(x+2)-3x=2(x+5)+1 | | 6p+6=4p+10 | | x^2=74.25 | | 16x+4=-19x-16 | | 7(x+7)+2x=31 |